
 © Sep 2017 BanyanOps All Rights Reserved 1

Transparently Securing Kafka, Istio-style, with up to 300% Higher Performance

than Native TLS in Microservice Environments

Jayanth Gummaraju

BanyanOps Inc.

jayanth@banyanops.com

Kafka is emerging as the epicenter of today’s microservice deployments with ephemeral clients running in

containers using Kafka for fast, asynchronous communication. Securing and auditing Kafka in these

dynamic environments with high performance can be very challenging, especially at scale. In this article,

we propose a new approach that not only provides transparent, scalable, end-to-end security between

producers and consumers, but also gives a significant boost to mTLS performance for data-in-transit

without any changes to code/config.

1. Introduction

Kafka is emerging as a dominant messaging platform in microservice environments. Whereas

one-to-one, request/response-style communications are usually handled using direct,

synchronous, service-to-service communication (e.g., REST, grpc), one-to-many/many-to-one

asynchronous communications are better handled using a Pub/Sub messaging platform like

Kafka. Today’s typical microservice deployments involve ephemeral Kafka clients (producers

and consumers) running in dynamic container orchestration environments such as Kubernetes,

Marathon, or Docker Swarm. Kafka servers usually serve as an external data service that its

clients use for asynchronously communicating data (e.g., SMACK stack).

Securing Kafka in such microservice environments is very challenging -- it involves not only

controlling access to sensitive data-at-rest in Kafka, but also securing and auditing data flowing

between short-lived producers/consumers through Kafka servers. Kafka natively provides basic

security features such as Java SSL, Kerberos/SASL, and simple ACLs. However, as we move

into dynamic microservice environments with multiple tenants and clusters, native mechanisms

can be challenging to operationalize and inadequate for compliance in regulated environments.

Organizations are on their own to ensure end-to-end encryption between producers and

consumers, enable multi-factor authentication, segment access to Kafka, setup secure key

management (e.g., PKI), handle weak/leaked credentials including revoking access to

compromised entities, setup fine-grained role- and time- based access controls, meet ever-

changing audit and compliance requirements, and ensure developers spanning multiple teams are

accessing Kafka following security best practices.

To address these challenges, we introduce a new approach using sidecars (aka micro-engines) that

secures Kafka transparently, without needing any changes to Kafka clients, servers, or the

underlying platform. Our approach has also been advocated by the recently announced open

service mesh platform, Istio, from Google/IBM/Lyft albeit in the context of Kubernetes services.

Whereas sidecars are primarily deployed in container-based green-field environments from the

ground-up for operational needs like load balancing, this article focuses on deploying them in

both container and non-container (process) based brown-field environments for security, and

tailored to Kafka setups. Sidecars (can be process or container) are deployed alongside Kafka

components including producers, consumers, brokers, and zookeeper servers. The sidecars

authenticate each component using multiple factors (e.g., service account, metadata, etc.) and

assign them cryptographic identities, intercept all connections and transparently upgrade them to

mailto:team@banyanops.com
http://kafka.apache.org/
https://www.oreilly.com/ideas/the-smack-stack
https://www.confluent.io/blog/apache-kafka-security-authorization-authentication-encryption/
https://www.confluent.io/blog/apache-kafka-security-authorization-authentication-encryption/
https://www.openstack.org/summit/boston-2017/summit-schedule/events/18443/securing-microservice-interactions-in-openstack-and-kubernetes?BackURL=https%3A%2F%2Fwww.openstack.org%2Fsummit%2Fboston-2017%2Fsummit-schedule%2Fglobal-search%3Ft%3Dgummara
https://istio.io/

 © Sep 2017 BanyanOps All Rights Reserved 2

mTLS, and exchange identities for fine-grained topic-level time-based access controls. In

addition, to guarantee end-to-end security between producers and consumers, data-at-rest is also

encrypted and can only be accessed by authorized consumers. All of this is accomplished without

changing a single line of code or config in any Kafka component.

In this article, we demonstrate how such an approach can be leveraged for protecting Kafka to

provide superior security, strong authNZ, higher TLS performance, and several operational

benefits compared to using just the native Kafka security. In particular, this approach provides:

• State-of-the-art secure transparent encryption between all Kafka components

independent of Java versions on the servers and language limitations on the clients

• End-to-end producer-to-consumer encryption and access control including when data

is at rest

• Segmentation between Kafka components and/or other applications without punching

firewall holes

• Multifactor identity and strong authentication using decorated X.509 certs for clients,

brokers, and zookeeper

• Higher than native mTLS performance made possible by using high-speed TLS

libraries, ciphersuites and other optimizations

• Secure, simplified PKI infrastructure using short-lived certs (rotated every few mins),

secure key management (e.g., keys not exposed on disk), and secure bootstrapping

• Transparent encryption between zookeeper servers (zookeeper has no native support

yet)

• Independent audit of accesses and policy revisions for fast-changing

producers/consumers that are hard to track

• Fine grained access controls such as leased access to clients for only approved topics,

during specific times, etc. using role/attribute-based access controls (RBAC/ABAC)

• Deep visibility (e.g., topic, consumer group, etc.) into network traffic while preserving

end-to-end encryption between client and server

• Separation of application development from security considerations, allowing

developers to just focus on application logic and velocity

• Homogeneous controls across multiple services, not limited to just Kafka

Our evaluation results show that for typical microservice deployments, where the number of

concurrent connections is high (>=64) and the record sizes are small (<= 1KB) our system

provides huge (~200-300%) performance improvement over native TLS implementation both in

terms of Throughput and Response Times using the latest supported Java version (1.8.x) in

Kafka. Surprisingly, even with just one connection, we saw up to ~300% throughput

improvement, making the native implementation a broader problem than just in microservice

environments. The performance benefits are primarily due to using high-performance Banyan
sidecars written in Go and limitations in native Java SSLEngine compared to Go crypto/tls

(details in Section 4). We expect to get similar performance results (perhaps better?) by extending

other high-performance sidecars like Envoy, which is written in C++ and uses

OpenSSL/BoringSSL TLS library. Looking ahead, on a preliminary port of Kafka to the pre-

released Java 1.9 (1.9+181) the performance gap is narrowed, but still substantial (up to 36%).

Although there is CPU cost associated with using a sidecar (~15% for 32MB/s and 64 concurrent

connections), the security, performance, and operational benefits provided by this approach easily

outweigh the CPU overhead for most deployments.

https://issues.apache.org/jira/browse/ZOOKEEPER-1000
https://www.banyanops.com/
https://github.com/spacemonkeygo/openssl/issues/78
https://github.com/envoyproxy/envoy
https://www.cossacklabs.com/replacing-openssl-with-boringssl.html
https://www.techworld.com/news/developers/java-9-release-date-new-features-3660988/

 © Sep 2017 BanyanOps All Rights Reserved 3

2. Overall Architecture

Figure 1: Typical Microservices Environment with Banyan’s shared sidecars for Kafka security

Figure 1 shows a typical microservice environment accessing Kafka. On the left we have

producers, consumers and other workloads running in container-based clusters such as

Kubernetes, Swarm, or Marathon. On the right we have Kafka brokers and zookeeper instances

that hold data and metadata shared by Kafka clients, viz. producers and consumers. On every

host, Banyan’s shared sidecar (can be a process or a container) is deployed that intercepts all

communications between Kafka clients and brokers, between brokers and zookeeper, between

zookeeper servers and between brokers. There is no change needed either in the code or config of

clients, brokers or zookeeper. In fact, none of them are even aware that the communication is

getting intercepted and/or modified in any way.

The overall flow of data from producers to consumers using sidecars is as follows. Producer

creates a topic (a set of partitions aka message queues) and sends messages to the Kafka broker

(leader) responsible for the topic partition. The shared sidecar running on the producer VM

intercepts the connection to the leader, and depending on the policy coordinates with the sidecar

on the leader to upgrade the connection to use TLS. If mutual auth is also requested, the producer

and broker are authenticated by the sidecars using one or more factors such as their service

accounts, labels, container images/SHA of binary, etc. Each sidecar validates the remote side’s

identity based on the certificates exchanged between the sidecars as part of the TLS handshake.

The sidecars are also responsible to verify if the policy allows the producer to send data to this

topic at this time.

If everything looks good, the sidecar forwards either the decrypted data after TLS, or re-encrypts

the messages (payload) with a topic-specific AES-256 symmetric key if end-to-end encryption is

requested before sending it to the leader. The leader receives the messages, persists them to disk,

and sends replicas of the messages to other brokers (followers). Depending on the policy, sidecars

in the broker VMs can again be used to upgrade their connection to use mTLS.

Just like producer to broker data-flow, broker to consumer data-flow can be upgraded to use

mTLS, and access to specific topics can be controlled, according to the policy specification.

Consumers (and consumer groups) subscribe to specific topics to read messages from the

partition leaders, also store an offset as a marker of how much they have consumed. If the policy

requires mTLS, when a consumer connects to the broker, the sidecar on the consumer VM

intercepts the connection, validates the consumer, and establishes TLS connection to the broker-

 © Sep 2017 BanyanOps All Rights Reserved 4

side sidecar after validating the broker identity during handshake. The broker-side sidecar, in

turn, validates the broker identity and consumer identity (mTLS handshake), checks for READ

access to the topic and then sends the consume request to the broker. The data returned by the

broker is either sent as is, or decrypted using topic-specific AES-256 symmetric key before

sending on the TLS channel.

Zookeeper is the distributed consensus store responsible for electing a controller, managing

broker membership, and configuring topics along with quotas and ACLs. Zookeeper is just

another service and any communication between brokers and zookeeper, and between zookeeper

servers themselves can similarly be encrypted and controlled for access using the sidecars.

The TLS certificates needed for encrypting and authenticating connections is handled

transparently and securely using a high-performance PKI infrastructure. Once the sidecars are

securely bootstrapped, they are responsible for issuing certificate requests on behalf of the

producers and consumers to Banyan Certificate Authority, which is optionally integrated with the

CA (certificate authority) and HSM (hardware security module). These certificates are decorated

with additional metadata about producers and consumers using fields like SNI, OU, etc. to add

authentication factors and enable easy auditing. Furthermore, the certificates/keys for the clients

and brokers are rotated frequently (e.g., once/hour) and only stored in memory for better security.

For a more detailed description of Kafka operation itself, please refer to the Kafka

documentation.

3. Security and Operational Benefits

Using a sidecar model provides several benefits to both the Security and Operations teams in a

variety of environments. In this section, we discuss these benefits specifically in the context of

Kafka running in dynamic, microservice environments.

Simplified operations

• Separate application logic from security requirements: It’s hard to follow security

best practices (e.g., no credentials on disk, short-lived certs) in multi-tenant

environments, where producers/consumers are written by developers spanning multiple

teams, in multiple languages (polyglot environments), without compromising developer

velocity. By using an approach that is completely transparent to the application, it

becomes very easy to deploy a highly secure solution even in brown field environments,

and in the Kafka case, with potentially better performance (next Section).

• Visibility into ephemeral Kafka clients: Microservice environments have short-lived

producers/consumers that could be running for just a few seconds, from any number of

hosts. Getting full visibility into these interactions is essential for smooth operations.

• Single pane of glass: The same dashboard used for managing Kafka can be used for

other services in container environments like Kubernetes, Mesos, Docker Swarm, and

data services like MySQL, Redis, etc.

Dynamic security

• High performance, end-to-end secure encryption: Sidecars enable using the latest,

greatest ciphersuites, independent of the Java versions in Kafka components and end-to-

end encryption between producers and consumers. Java SSL has been historically known

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/

 © Sep 2017 BanyanOps All Rights Reserved 5

to be slow to upgrade to the most secure and high-performance ciphers, and has its own

set of vulnerabilities different from other SSL engines like OpenSSL. For example,

SHA1 TLS certificates were deprecated only in July 2017 (8u_141 release), although

SHA1 has known security issues since at least 2014. Furthermore, Kafka clients are

becoming increasingly polyglot and ensuring all these languages have the best security

implementation that are compatible with Java SSL is a non-trivial problem.

• Multi-factor mutual Auth and secure PKI: Sidecars, after securely bootstrapping,

authenticate Kafka components (clients, brokers, zookeeper) using multiple factors such

as service accounts, labels, binary SHA, location, etc. Once the identity is established, the

sidecars obtain and rotate short-lived certificates/keys on behalf of the components and

do not store them, addressing common challenges such as revocation, stolen keys and

credential leakage (e.g., no truststore password in configs, long-lived certificates, etc.).

Banyan PKI infrastructure is also easily integrated with existing organization-wide CA

infrastructure and HSMs that store root CA keys.

• Fine-grained access control: Sidecars enable access control, where it matters, when it

matters, and at the desired granularity. For example, for less trusted consumers, the

operators can easily provide leased access to specific topics for a short duration (e.g., 1

hr). Such policies can be specified using the well-known RBAC/ABAC frameworks and

used in conjunction with native Kafka policies for additional security.

Compliance and Audit

• Audit unauthorized accesses: Get detailed information about clients accessing Kafka in

real-time and historically: e.g., container/process name and id, host, container

image/binary. Additionally, this data can be easily sent to SIEMs such as Splunk for

further analysis and forensics.

• Segment for compliance (e.g., PCI-DSS) without punching firewall holes: Kafka

clients and brokers can be segmented using their multi-factor cryptographic identities

rather than punching firewall holes using their IP address and ports. This approach to

segmentation, called Identity-based segmentation, works well even in dynamic

environments where IP addresses are changing/unreliable and also helps thwart attacks

and avoid misconfigurations related to IP address or application spoofing.

• TLS everywhere for compliance: There are several compliance requirements for data-

in-transit -- from storing keys safely, ensuring privacy of sensitive data, to using the latest

ciphersuites (e.g., NIST 800-52 and FIPS 140-2 guidelines for HIPAA, PCI-DSS 3.2 for

credit card data). Accommodating this growing set of strict guidelines is easily achieved

using a separate security layer like transparent sidecars, which are independent of the

application and can be easily upgraded and tested.

4. Performance Implications

In this section, we discuss the experiments we performed to understand the overhead associated

with enabling TLS between Kafka clients and brokers in microservice environments. We describe

our setup, performance results and analyze the tradeoffs of using sidecars vs. native TLS in the

rest of the section.

Experimental Setup

Broker/Server Azure DS-12 v2 (4 vCPUs, 28GB memory)

Client Azure DS4 v2 (8 vCPUs, 28GB memory)

https://adtmag.com/blogs/watersworks/2017/07/oracle-cpu.aspx
https://blog.qualys.com/ssllabs/2014/09/09/sha1-deprecation-what-you-need-to-know
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
https://blog.pcisecuritystandards.org/preparing-for-pci-dss-key-dates
https://cdn2.hubspot.net/hubfs/281302/Migrating_from_SSL_and_Early_TLS_-v12.pdf
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TLS_Ciphers,_Insufficient_Transport_Layer_Protection_(OTG-CRYPST-001)

 © Sep 2017 BanyanOps All Rights Reserved 6

Oracle JDK Java builds (1.8.0_131-b11, 1.8.0_144-b01)

Versions Kafka: 2.10-0.10.0.1; Banyan: 0.4.x

OS Ubuntu 14.04 linux-4.4.0-78-generic

Ciphersuite TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Benchmarks rdkafka_performance, kafka-producer-perf-test++
Table 1: Experimental Setup

Table 1 gives the experimental setup we used for our performance studies. We ran several

experiments using standard Kafka performance tools with default settings: rdkafka_perf from

librdkafka and kafka-producer-perf-test from Apache Kafka distribution. We also extended

kafka-producer-perf-test so that we could see the effect of increasing number of connections. We

applied Kafka-3554 patch that allows varying number of threads for producers. The main change

we made was to use a new connection for each thread instead of reusing the same connection for

all threads. We also added code to ignore the initial jitter in performance due to a large number of

concurrent connections initiated in the beginning. The code is available on github.

A typical Kafka production deployment in a microservice environment entails tens of Kafka

brokers and hundreds of Kafka clients accessing thousands of topic partitions with varying record

(message) sizes. But in order to focus on just the overhead of using TLS and avoid any

performance impact due to other factors (e.g., replication, latency/throughput between brokers,

etc.), we decided to use one broker, one client, and one topic partition, but vary the attributes that

matter most in microservice environments: number of connections, record sizes, and applied load.

We verified our results were similar with multiple brokers -- each new broker adds a new TLS

connection, scaling TLS overhead linearly. To emulate the impact of many clients we increased

the number of connections in kafka-producer-perf-test, as described previously. We measured

throughput, response times, and CPU overhead in both the client and broker machines, and ran

experiments multiple times and for long enough duration to get statistically significant results.

That said, additional experiments can be performed to characterize the results more precisely

(e.g., tail latency, different hardware/software versions, micro-benchmarks, etc.), which is beyond

the scope of this article.

Performance results

Overall, our results show that for typical microservice deployments, where the number of

concurrent connections is high (>=64) and the record sizes are small (<= 1KB) our system

provides ~2-3X performance improvement over native TLS implementation both in terms of

Throughput and Response Times when using recent JDK 1.8.x builds (last couple of months).

The performance benefits are primarily due to using a high-speed TLS library (Go 1.8.x

crypto/tls) vs. native Java SSLEngine and fast ciphersuite (AES128-GCM).

Our results are conservative and would be even better if we did not use persistent connections

between the client and kafka broker. Sidecars optimize non-persistent connections using

techniques such as tunneling multiple TCP connections into one connection between sidecars,

and reusing TLS sessions with tickets. These optimizations mainly help in reducing the overhead

of setting up TCP and TLS connections. Note that TCP handshake incurs a round-trip cost

(SYN/SYN-ACK/ACK), and TLS handshake involves multiple round-trips and an asymmetric

key exchange, which is very expensive compared to symmetric encryption used in steady state.

https://issues.apache.org/jira/browse/KAFKA-3554
https://github.com/banyanops/kafka-perf

 © Sep 2017 BanyanOps All Rights Reserved 7

Figure 2 shows sustained throughput as a function of record size. For small record sizes (128B)

the overhead of native TLS (Tput-SSL) compared to using sidecars (Tput-Bnn) is 3.06X

(producer) and 1.92X (consumer), and compared to not using TLS is 3.68X (producer) and 3.67X

(consumer). Sidecars themselves incur an overhead of 1.2X (producer) and 1.5X (consumer)

compared to not using TLS. The insecure, non-TLS case (Tput-Base) has the additional benefit of

doing zero copy transfers using sendfile for consumers. As the record size increases (1K, 8K), the

performance overhead of TLS using sidecars is negligible compared to no TLS. The native TLS

implementation, however still has a huge performance impact compared to using sidecars: 2.34X

- 2.61X (producer) and 2.61X-2.75X (consumer).

Note that the throughput tapers off at ~80MB/s for producer tests. This is because we get limited

by the disk bandwidth and we’re running with the default configuration (acks=1) which writes to

log before acknowledging the client. For faster disks, we expect the curves to be higher, but the

relative throughputs between no-TLS and TLS (native, bnn) shouldn’t change much. If network

were the bottleneck, factors such as TLS record overhead need to be considered. However, for

long-lived connections used in our experiments, the TLS record size quickly reaches 16KB as the

TCP window grows. Hence, the TLS record overhead (~40B) becomes negligible.

Figure 3 shows the average response time as a function of record size and applied load for a

producer test. The results show that for small applied loads and small number of connections,

there is not much difference in performance between no-TLS (RT-Base) and TLS with both

native (RT-SSL) and sidecar (RT-Bnn) implementations. However, as the applied load increases

(32MB/s) and the number of concurrent connections increases (64, 512), whereas the response

0

40

80

120

128 1024 8192

Th
ro

u
gh

p
u

t (
M

B
/s

)

Record Size (B)

Sustained Throughput Conns=1
Consumer, rdkafka_performance

Tput-Base Tput-SSL Tput-Bnn

0

40

80

120

160

2 8 32

R
es

p
 T

im
e

(m
s)

Applied Load (MB/s)

Avg Response Time Conns=64
RecordSize=1024

Producer, kafka-producer-perf-test

RT-Base RT-SSL RT-Bnn

0

40

80

120

128 1024 8192

Th
ro

u
gh

p
u

t (
M

B
/s

)

Record size (B)

Sustained Throughput Conns=1
Producer, rdkafka_performance

Tput-Base Tput-SSL Tput-Banyan

0

40

80

120

160

200

240

8 64 512

R
es

p
 T

im
e

(m
s)

Number of connections

Avg Resp Times RecordSize=1024
AppliedLoad=32MB/s

Producer, kafka-producer-perf-test

RT-Base RT-SSL RT-Bnn

Figure 2: Sustained throughput as a function of record size

Figure 3: Avg response time as a function of number of connections and applied load (lower is better)

https://www.ibm.com/developerworks/linux/library/j-zerocopy/
https://hpbn.co/transport-layer-security-tls/#optimize-tls-record-size

 © Sep 2017 BanyanOps All Rights Reserved 8

times of no-TLS and TLS-with-sidecars become comparable, the performance differential

between native TLS and TLS-with-sidecars increases to more than 3X (up to 3.25X).

Figure 4 shows the CPU overhead associated with using TLS and more importantly using

sidecars. The results show that CPU overhead with native TLS is ~15-20% for small applied

loads (2MB/s), but quickly rises to ~45% on the client and ~90% for large applied loads

(32MB/s) on the server. The overhead on server matters more because on the client this overhead

is amortized over 64 connections (< 1% per connection) and typically clients are spread across

multiple machines. Using a sidecar incurs additional CPU overhead of 1.6% per connection (95%

across all clients) and ~15% on the server compared to using native TLS.

Performance Analysis

Kafka has known performance issues with TLS primarily due to reliance on Java native SSL

(KAFKA-2561, Librdkafka-920). The performance numbers discussed in these issues are similar

or worse than those reported in this article. This section explores the performance tradeoffs of

using sidecars rather than Java native SSL for TLS encryption.

The performance difference between using native Java SSL vs. sidecars is primarily affected by

two factors:

• Using sidecars can entail extra copies: If TLS is implemented in user-space (like in our

experiments), data intended for Kafka first enters the kernel’s networking stack, then is

processed and copied to the sidecar in user space where it gets decrypted. The data is then

copied back into the kernel and then copied again into the user space of Kafka broker.

This increases latency and incurs CPU overhead. However, modern CPUs leverage REP

STOSD and SSE/SIMD instructions very efficiently while performing memcpy, which

significantly reduces the CPU overhead and latency associated with copies. Moreover,

for highly latency sensitive and high bandwidth applications, TLS can be implemented in

the kernel (e.g., new Linux (4.13) or kernel module) to reduce the overhead even further.

• Java SSL is slow: The JDK SSLEngine has known performance overheads – very poor

GCM performance, unable to effectively utilize all the cores of the CPU, garbage

collection overheads, and limitations in some of its APIs (e.g., SSLEngine.unwrap())

causing synchronization issues. The performance would be much worse than reported

here with older versions of Java because prior to version 1.7u40 doesn’t even have

support for AES-NI instructions, which is essential for reasonable TLS performance.

Trying to fix this issue by using a different SSL library (e.g., Netty) in Kafka is non-

0

100

200

300

400

2 8 32

C
P

U
 %

Applied Load (MB/s)

Server 4 CPUs Conns=64
RecordSize=1024

RT-Base RT-SSL RT-Bnn

0

100

200

300

400

500

600

700

800

2 8 32

C
P

U
 %

Applied Load (MB/s)

Client 8 CPUs Conns=64 RecordSize=1024

RT-Base RT-SSL RT-Bnn

Figure 4: CPU overhead on client and broker machines (lower is better)

https://issues.apache.org/jira/browse/KAFKA-2561
https://github.com/edenhill/librdkafka/issues/920
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://github.com/torvalds/linux/blob/master/Documentation/networking/tls.txt
https://www.slideshare.net/InfoQ/netty-apple-large-scale-deploymentconnectivity
https://stackoverflow.com/questions/25992131/slow-aes-gcm-encryption-and-decryption-with-java-8u20
https://issues.apache.org/jira/browse/KAFKA-2561

 © Sep 2017 BanyanOps All Rights Reserved 9

trivial, creates its own set of maintenance challenges, and would not address client-side

issues for other languages (e.g., PHP doesn’t reuse connections across requests).

Switching to CBC mode from GCM can reduce the performance overhead, but it comes at the

expense of weaker encryption and is not recommended in secure environments. Whereas both

CBC and GCM modes use XORing plaintext and data, CBC XORs with data that the attacker

knows (IV or ciphertext from the previous block), GCM XORs plaintext with a “nonce”

generated using a counter sent through a block cipher and also doesn’t need padding, which

makes it more secure. For example, CBC mode is vulnerable to timing-based side channel attacks

such as Lucky Thirteen (CVE-2013-0169) and padding oracle attacks (CVE-2016-2107).

Therefore, CBC ciphers have been declared obsolete (e.g., Google chrome only supports AEAD

ciphers) and does not meet compliance requirements (e.g, NIST 800-52 for HIPAA).

In order to verify that the overhead is indeed a result of poor GCM implementation, we ran two

experiments: using the weaker CBC instead of GCM for Java 1.8.x, and using a preliminary port

for the pre-release Java 1.9+181 (to be released end of Sep 2017) instead of Java 1.8.x. Java 1.9

has recently added support for pclmulqdq x86-64 instruction that should help with optimizing

GHASH used in GCM. Figure 5 shows the Throughput as a function of varying record sizes.

Using CBC instead of GCM, reduces the TLS overhead large record sizes (1.15X vs. 2.38X using

GCM for 8KB), but for small record sizes, the overheads are still very significant (2.45X for

128B and 1.62X for 1KB). As expected, using Java 1.9 (with GCM) is much closer in

performance to the sidecar implementation, but is still slower for small record sizes (1.36X for

128B) likely due to other SSLEngine limitations, as discussed above. Furthermore, upgrading to

the soon-to-be-released Java 1.9 to reduce TLS overhead involves upgrades to not just Kafka

server but also Java clients potentially being used by multiple teams across the organization and

with big changes in Java 9, it is likely going to be a slow process.

5. Discussion

Leveraging Istio-style transparent sidecars in microservice environments using Kafka can provide

several operational and security benefits. Although not useful as a load-balancer in these

environments (which is the common function associated with sidecars), this architecture enables

an application independent layer that can simplify operations management, provide dynamic

security, and streamline compliance and audit without impeding developer velocity. Being

completely transparent to the application and underlying platform allows our approach to not be

limited to just Kafka, but easily extends to other services and frameworks (e.g., MySQL, Redis,

etc.) in both green-field and brown-field deployments.

0

40

80

120

128 1024 8192

Th
ro

u
gh

tp
u

t
(M

B
/s

)

Record Size (B)

Using Java 1.8-CBC, 1.9-GCM
Tput-Base Tput-SSL Tput-Banyan

Tput-SSL-nogcm Tput-SSL-jdk9

Figure 5: Throughput using other Java configurations

https://issues.apache.org/jira/browse/KAFKA-2561
https://github.com/edenhill/librdkafka/issues/419
http://www.usenix.org/event/woot10/tech/full_papers/Rizzo.pdf
https://en.wikipedia.org/wiki/Lucky_Thirteen_attack
https://nvd.nist.gov/vuln/detail/CVE-2013-0169
https://www.openssl.org/news/secadv/20160503.txt
https://www.openssl.org/news/secadv/20160503.txt
https://blog.cloudflare.com/padding-oracles-and-the-decline-of-cbc-mode-ciphersuites
https://codereview.chromium.org/703143003
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://openjdk.java.net/jeps/246
http://openjdk.java.net/jeps/246
https://news.ycombinator.com/item?id=14746869

 © Sep 2017 BanyanOps All Rights Reserved 10

In addition, this approach can provide better than native performance for security functions like

mTLS by leveraging state-of-the-art libraries, ciphers, and other TLS optimizations for Kafka

servers and the polyglot clients, independent of the language limitations. Although using sidecars

does incur additional CPU overhead due to copies, the high-speed memcpy implementations in

modern CPUs and the relatively cheap cost of cores makes it a non-issue in most deployments.

These performance results are not specific to Kafka and extend to other frameworks that use Java

native SSL. For example, in addition to traditional frameworks like WebLogic and Hadoop, some

of the newer ones (e.g., SMACK stack including Spark and Cassandra) are likely subject to such

performance degradation for TLS encryption.

X.509 certificates enable short-lived credentials, additional authentication factors, and fine-

grained access controls like time-based leased access. However, solely relying on X.509

certificates for authentication may not be sufficient in some environments – e.g., if a client

application is acting on behalf of multiple end-users and needs to provide different views

depending on the identity of the end-user (e.g., WebLogic). We are working on extending our

approach to support such multi end-user environments.

With TLS 1.3 around the corner that would ban ciphers with vulnerabilities at any level, and

frequently updated compliance regulations, the sidecar approach allows easy upgrades to existing

infrastructure to support latest, greatest security practices without changing a single line of

application code or config.

Acknowledgements

We’d like to thank Rean Griffith, Eli Collins, Jay Kreps, Srinivas Mantripragada, Mendel

Rosenblum, Carl Waldspurger, Alberto Begliomini, Zack Butcher, and Wencheng Lu for their

insightful comments on the early drafts of this article.

https://www.oreilly.com/ideas/the-smack-stack

	Transparently Securing Kafka, Istio-style, with up to 300% Higher Performance than Native TLS in Microservice Environments

